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Abstract. Time-course gene expression data provides insight into the dynamics of complex biological processes, such as immune response. It is of interest
to identify genes with similar temporal expression patterns because such genes are often biologically related. However, this task is complicated by the high

dimensionality of genetic datasets and the nonlinearity of gene expression time dynamics. We propose an empirical Bayes approach to estimating ordinary

differential equation (ODE) models of gene expression, from which we derive metrics called the Bayesian lead-lag R2 values that capture similarities in the

time dynamics of two genes. The key feature of our method is that it leverages biological databases that document known interactions between genes.

This information is used to define informative prior distributions on the ODE model’s parameters. Our biologically-informed similarity metrics allow us to

recover clusters or networks of functionally-related genes.

Problem setup

• Objective: Cluster genes based on their temporal expression patterns.

Similar expressions might be due to genes being co-regulated by

same transcription factors.

• Statistical challenges:

– High-dimensional data (thousands of genes) + small sample sizes

(number of time points)

– Time dynamics of gene expression are nonlinear

– Clustering relies on similarity metrics, which often ignore a priori

biological network information in literature

• Our approach:

– Derive similarity metrics from models that explain dynamics of

gene expression

– Incorporate prior biological information (protein interaction net-

works, pathway databases) into calculation of similarity metrics

Gene expression as a dynamical system

• Ordinary differential equation model of co-regulated genes: For pos-

sibly co-regulated genes A and B, [1] proposed modeling temporal

expressions mA(t), mB(t) as dependent on common signal p(t):

dmA(t)

dt
= αAp(t) + βA − κAmA(t) + εt

dmB(t)

dt
= αBp(t) + βB − κBmB(t) + εt

where αA, αB measure strength of p(t) in first-order dynamics; κA,

κB are mRNA degradation rates. Solve for p(t) and integrate to get

mA(t) in terms of mB(t):

mA(t) = c1mB(t) + c2
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mA + c4t + c5 (1)

where, e.g., c1 = αA/αB and c2 = αAκB/αB.

• Linear modeling: Given gene expression measurements {mA(ti)}ni=1
and {mB(ti)}ni=1, fit (1) as the linear model Y = Xβ + ε where

β = [c1, c2, c3, c4, c5]
T , ε ∼ N(0, σ2In), and
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• Similarity metric (lead-lag R2): According to [1], R2 from fitting (1)

indicates genes A, B may be co-regulated or at least associated:

Lead-lag R2(A,B) =
‖Xβ̂OLS − Y 1n‖2

‖Y − Y 1n‖2
.

Empirical Bayes methodology

• Motivation: Lead-lag R2 similariity metric from [1] returns many false pos-

itives - gene pairs with high lead-lag R2, but no biological relationship.

• Why incorporate prior biological network information into lead-lag R2:

– Encourage genes known to be associated to receive higher pairwise scores

– Filter away gene pairs that are unlikely to be related

– Identify which genes are uncharacterized, but show similar patterns to

those with known functionality

• Part 1 – Prior adjacency matrix: Given a dataset of N genes measured

at n time points, use biological databases (e.g. GO, KEGG, Reactome,

STRING) to construct N ×N adjacency matrix W:

Wij =

)
**+

**,

1, if genes i, j are known to be associated

NA, if genes i, j have an unknown relationship

0, if genes i, j are unlikely to be associated.

Next, apply parts 2 and 3 below to each gene pair.

• Part 2 – Define normal-inverse gamma prior (Zellner’s g-prior) on β:

– Parameters c1, c2 in (1) link expressions of genes A and B

– Therefore: place prior distributions of non-zero mean on c1, c2 if the two

genes are known to be associated. Otherwise, use priors with mean zero.

– Normal-inverse gamma prior on (β, σ2):

β|σ2 ∼ N(β0, σ
2V0), σ2 ∼ Γ−1(a, b)

where β0 ∈ R5, V0 is positive semi-definite, and a, b > 0.

– Set β0 using prior adjacency matrix W:

β0 =

-
[1, 1, 0, 0, 0]T , if Wij = 1

[0, 0, 0, 0, 0]T , if Wij = 0 or NA.

Or, set β0 = [ξ, ξ, 0, 0, 0]T whenWij = 1, where ξ is chosen adaptively.

– Set V0 according to Zellner’s g-prior : V0 = g(XTX)−1 where g > 0.

– Under Zellner’s g-prior, posterior mean of β is:

β∗ = E(β|Y) =
1

1 + g
β0 +

g

1 + g
β̂OLS, (2)

where β̂OLS is the least-squares estimator (XTX)−1XTY.

– β∗ is a weighted average of prior information (β0) and the data (β̂OLS).

Admissible and consistent estimator of β.

– See right for data-driven selection of g parameter

• Part 3 – Compute Bayesian lead-lag R2: Standard definition of R2 for

least-squares regression may yield R2 > 1 for Bayesian models. So we use:

Bayesian lead-lag R2(A,B) =
.Var(Xβ∗)

.Var(Xβ∗) + .Var(Y −Xβ∗)

Automatic balance between priors and data

• Parameter g in Zellner’s g-prior balances prior information and data in pos-

terior regression coefficients β∗ in (2)

• Data-driven selection of g:

– No analytical solutions to g∗ = argming>0 ‖Y− Ŷ‖2 where Ŷ = Xβ∗
– Instead, minimize Stein’s unbiased risk estimate δ0(Y), an unbiased es-

timator of ‖Ŷ −Xβ‖2. If estimating β by β∗ in (2), δ0(Y) is:

δ0(Y) = ‖Y −Xβ∗‖2 +
/

2gp

1 + g
− n

0
σ̂2,

where σ̂2 = ‖Y − ŶOLS‖2/(n− p), and X is n× p.

Theorem 1. The value of g which minimizes Stein’s unbiased risk

estimate is:

g∗ =
‖ŶOLS −Xβ0‖2 − pσ̂2

pσ̂2
.

Theorem 2.When setting β0 = [ξ, ξ, 0, 0, 0]T in the Wij = 1 case,

the values of ξ and g that minimize Stein’s unbiased risk estimate are:

ξ∗ =
YTX12

‖X12‖2
, g∗ =

‖ŶOLS‖2‖X12‖2 − (YTX12)
2

‖X12‖2pσ̂2
− 1,

where X12 is the element-wise sum of first two columns of X.

Results on real gene expression data

• Data: provided by [2]; contains expressions of 12,657 genes in Drosophila melanogaster (fruit fly) at n = 21 time points immediately following an induced

immune response. Reduce to a set of N = 1735 genes that are differentially-expressed (DE) or are associated with DE genes.

• Analysis: Hierarchical clustering applied to the Bayesian lead-lag R2 similarity matrix

– Prior adjacency matrixW constructed using the STRING database. STRING provides each gene pair a score in [0, 1] indicating likelihood of association.

– All clusters significantly enriched for specific biological functions, according to Gene Ontology (GO) analysis

– Shown below: clusters recover known interplay between immune response and metabolism, and suggest roles for numerous uncharacterized genes
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Network reconstruction

Neighbors of genes CG43202, CR44404, CG43236, CG43920.

Edge = Bayesian lead-lag R2 > 0.9. Blue edges: previously

unknown (Wij = NA). Red edges: known (Wij = 1).
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Comparing distributions of lead-lag R2 and Bayesian lead-lag R2 values

In addition to the Bayesian lead-lag R2 (LLR2), we also compute:

• “LLR2
other”: from the model mA(t) = c1mB(t) + c2

( t
0 mB(s)ds + c5. Indicates

variation in gene A due just to gene B.

• “LLR2
own”: from the model mA(t) = c3

( t
0 mA(s)ds + c4t + c5. Indicates variation

in gene A due to its own past + linear time trend.

• If genes A, B are truly associated, LLR2
other and LLR2 − LLR2

other should be large

• Shown below: Bayesian method shifts distribution of lead-lag R2; fewer false positives
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