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Summary

• Sparse regression has become a popular technique for learning systems of ODEs/PDEs from time series or spatiotemporal data.

• This methodology involves regressing the time derivative of a process on a large set of possible functions, and identifying the

(sparse) subset of functions that accurately describe the dynamics of the process.

• Quantifying the uncertainty inherent in the learned differential equations, e.g. via confidence intervals, remains an open problem.

• We propose leveraging recent advances in high-dimensional inference to obtain hypothesis tests and confidence intervals for

individual terms comprising a system of ODEs learned from data.

• This significance-driven approach recovers the functional form of a differential equation more accurately than existing methods.

Motivation

How can we learn the form of a differential equation dx/dt

from time series data x(t1), ..., x(tn)?

• Example – The Lotka-Volterra (LV) equations:

Let x1(t) and x2(t) be the population sizes of a prey

species and a predator species, respectively:

dx1
dt

= αx1 − βx1x2,

dx2
dt

= δx1x2 − γx2

where α, β, γ, δ are rates of increase/decrease.

• What if we did not know these equations and wanted to

learn them to understand the population dynamics, given

measurements of x1(t) and x2(t) at t1, ..., tn?
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α = 1, β = 0.1, γ = 1.5, δ = 0.075
Lotka−Volterra equations (numerical solution)

• Purpose: Learned ODEs can be numerically solved for

simulation/forecasting, identifying critical parameters, etc.

Problem setup

• Consider a d-dimensional variable x at time t:

x(t) = [x1(t), ..., xd(t)]
T ∈ Rd,

whose temporal evolution is governed by:

dx

dt
= f(x(t)), for some f : Rd → Rd.

Given temporal data x(t1), ...,x(tn), we want to learn f

in closed form.

• Assumptions: Assume f has a sparse representation in

some basis, e.g. polynomials up to degree k.

– Why: Many ODEs can be written as a linear combina-

tion of components x1, ..., xd (or products of them).

– Example: Lotka-Volterra equations can be written as:
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• Approach: Suppose f : Rd → Rd governs a 2-D ODE

system (i.e. d = 2) and we assume it is in the span of

degree-2 polynomials. Then dx/dt = f(x(t)) becomes:
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or more compactly, ẋ = Θ(x)B.

• Objective: Estimate the sparse coefficient matrix B from

data x(t1), ...,x(tn) using sparse regression.

• The nonzero entries of the estimated B indicate which

polynomial terms belong in f .

Methodology

• Regression model setup: Given data x(t1), ...,x(tn), we have Ẋ = Θ(X)B + ε, which we can write out as:
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where ε ∼ N(0, σ2In). Ẋ is computed via finite differences and Θ(X) is computed from the observed data.

• Existing approaches: Estimate each column of the sparse matrix B via the Lasso or other sparse optimization methods [2, 5, 6].

Identify the relevant polynomial terms as those with non-zero coefficients.

• Limitations of existing methods: Many spurious, high-order polynomial terms tend to be included in the learned function f ,

with very small coefficients.

– Need a way to quantify coefficients’ uncertainty, e.g. by significance/confidence intervals or inclusion probabilities.

– Existing uncertainty quantification methods rely on intensive Bayesian inference or resampling [3, 4].

• Our approach: Instead of the Lasso, use new high-dimensional inference techniques that provide hypothesis tests/confidence

intervals for regularized regression. These are free of tuning parameters and are computationally efficient.

– Asymptotic normality of bias-corrected Lasso and ridge estimators yield hypothesis tests for each H0 : βi,j ∕= 0.

– We also use SEMMS [1], an empirical Bayes variable selection method for high-dimensional GLMs.

– We select the polynomial terms that are statistically significant or have high posterior probabilities of being non-zero.

Simulation results

We generate data from the Van der Pol ODE system, dx1/dt = x2, dx2/dt = −x1 + µ(1 − x21)x2 by adding noise to the

numerical solution with µ = 2, and then try to learn the dx2/dt equation.

Correct polynomial terms (x1, x2, and x21x2) are identified with

bias-corrected regression methods as statistically significant.

Numerical solution of
Van der Pol equations
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Numerical solution of equations
learned via Lasso
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Numerical solution of equations
learned via bias−corrected Lasso
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Numerical solution of equations
learned via bias−corrected ridge
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