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Introduction

Time-course gene expression datasets measure expressions of

thousands of genes at a few time points.

Statistical task: want to find clusters/networks of genes with similar

time dynamics (either co-moving or lead-lag)

Challenges: complex time dynamics, data is high-dimensional
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Challenges in cluster analysis of gene expression

How to measure “similarity” in two genes’ expressions?

Idea: Derive similarity metrics from ODEs that model

co-movement/lagged relationships in gene expression over time

How to find similar gene pairs within thousands of genes?

Idea: Encourage high similarity scores between genes that are

known to be associated, according to prior biological information

(obtained from public databases)
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Gene expression as a dynamical system

How does a gene’s expression vary over time?

Let mA(t) = expression of gene A at time t. Possible model:

dmA(t)

dt
= p(t)− κAmA(t),

where p(t) = some regulatory signal, κA = degradation rate.

[Farina et al., 2007]

How do two associated genes A and B vary over time?

dmA(t)

dt
= (αA p(t) + βA)− κAmA(t),

dmB(t)

dt
= (αB p(t) + βB)− κBmB(t).
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Gene expression as a dynamical system

Rearrange/integrate ODEs to get gene A’s expression in terms of B’s:

mA(t) = c1mB(t) + c2

∫ t

0

mB(s) ds + c3

∫ t

0

mA(s) ds + c4t + c5.

This is linear in the coefficients c1, ..., c5

(which are composed from parameters αA, αB , βA, βB , κA, κB).

Therefore:

• We can fit this model to time-series data {mA(ti )}ni=1,

{mB(ti )}ni=1 using linear regression

• Then, we can use the R2 to measure association between the

temporal expressions of genes A, B
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Fitting dynamical models to data

Given time-series data {mA(ti )}ni=1, {mB(ti )}ni=1, we express our model

mA(t) = c1mB(t) + c2

∫ t

0

mB(s) ds + c3

∫ t

0

mA(s) ds + c4t + c5

as Y = Xβ + ε, where β = [c1, ..., c5]T and ε ∼ N(0, σ2In), with:

Y =

mA(t1)

...

mA(tn)

 , X =

mB(t1)
∫ t1

0
mB(s)

∫ t1

0
mA(s) t1 1

... ... ... ... ...

mB(tn)
∫ tn

0
mB(s)

∫ tn
0

mA(s) tn 1



Then calculate: R2 = Fraction of variance in mA(t)
explained by model above =

‖Xβ̂ − Ȳ1n‖2

‖Y − Ȳ1n‖2

where β̂ = least-squares estimate of β, and Ȳ = mean of Y.
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Measuring similarity in time dynamics of two genes

We’ll call this R2 the lead-lag R2.

• Measures association in temporal patterns of genes A, B

• But: does not account for prior knowledge about their

relationship

Our contribution: Use empirical Bayesian regression to

incorporate prior biological information into lead-lag R2

(“empirical” because hyperparameters will be chosen in a data-driven way).

Sources of biological information: pathway databases (e.g., GO, KEGG, STRING),

protein-protein interaction networks
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Background on Bayesian regression

Consider the linear model Y = Xβ + ε:

• X ∈ Rn×p and Y ∈ Rn×1 are observed, β ∈ Rp is unknown

• Assume ε are i.i.d. normal errors: ε ∼ N(0, σ2In)

Approaches to estimating β:

• Frequentist approach: Use the ordinary least-squares estimate

β̂OLS = (XTX)−1XTY

• Bayesian approach: Choose prior probability distributions p(σ2)

and p(β|σ2).

◦ Combine p(Y|β, σ2), p(β|σ2), and p(σ2) via Bayes’

theorem to get posterior distribution of β

◦ Can use mean of posterior distribution as an estimate of β
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Which prior distributions should we use?

The “normal-inverse gamma” prior is a common conjugate prior:

• Choose p(β|σ2) to be the N(β0, σ
2V0) distribution for some

β0 ∈ Rp and p.s.d. matrix V0

• Choose p(σ2) to be the Γ−1(a, b) distribution for a, b > 0

If we choose V0 = g(XTX)−1, for some g > 0. Then:

E(β|Y) =
1

1 + g
β0 +

g

1 + g
β̂OLS

This is “Zellner’s g -prior”.

Soon we’ll see how to choose β0 for our gene clustering problem.

(Hint: this will be where we can incorporate prior information about the genes!)
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Our Bayesian regression methodology

Given a dataset of N genes measured at T time points,

1. Define a N × N prior “adjacency matrix” W:

Wij =


1 if genes i , j have known association

NA if genes i , j have unknown relationship

0 if genes i , j are unlikely to be associated

2. For each gene pair, use Bayesian regression to fit the model

mA(t) = c1mB(t) + c2

∫ t

0
mB(s) + c3

∫ t

0
mA(s) + c4t + c5:

◦ Use W to set mean of prior distribution on β = [c1, ..., c5]:

β0 = [1, 1, 0, 0, 0] if Wij = 1, or all 0 otherwise.

Why: first two parameters of β link expressions of genes A, B.

◦ Compute posterior mean of β, and then the lead-lag R2.

10 / 16



Data-driven tuning parameter selection

Recall the posterior mean of β was:
1

1 + g
β0 +

g

1 + g
β̂OLS.

How do we choose g?

• No solutions to g∗ = argming>0 ‖Y − Ŷ‖2 (sum of squared

residuals), where Ŷ = Xβ∗ and β∗ = E(β|Y)

• Instead, choose g to minimize Stein’s unbiased risk estimate

(unbiased estimate of ‖Ŷ − Xβ‖2).

Theorem
Stein’s unbiased risk estimate is minimized by:

g∗ =
‖ŶOLS − Xβ0‖2 − pσ̂2

pσ̂2
,

where ŶOLS = Xβ̂OLS, σ̂2 = ‖Y−ŶOLS‖2

n−p , and n, p are dims. of X.
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R2 for Bayesian regression models

Classical definition of R2 for ordinary least-squares may yield

R2 > 1 for Bayesian regression.

Instead, we define:

R2 =
V̂ar(Xβ∗)

V̂ar(Xβ∗) + V̂ar(Y − Xβ∗)
,

which we call the Bayesian lead-lag R2 between genes A and B,

where β∗ = 1
1+gβ0 + g

1+g β̂OLS is the posterior mean of β.
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Outline of empirical results

Dataset: expressions of 1735 genes in fruit flies at 21 time points,

immediately following an induced immune response.

Method successfully identifies:

• Metabolism-immunity tradeoff found in previous studies

• Known groups of circadian rhythm, metabolic, immune response genes

• Novel interactions between orphan genes and known pathways
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Hierarchical clustering on Bayesian lead-lag R2 similarity matrix
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Network reconstruction
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Thank you!

Sara Venkatraman

skv24@cornell.edu

https://sara-venkatraman.github.io
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Appendix: Stein’s unbiased risk estimate for linear models

Theorem [Fourdrinier, Strawderman, Wells 2018]

Let Y ∼ N(Xβ, σ2In) where X ∈ Rn×p. Let β∗ be a

weakly-differentiable function of the least-squares estimator β̂OLS such

that Ŷ = Xβ∗ = a + SY for some vector a and matrix S. Then

δ0(Y) = ‖Y − Xβ∗‖2 + (2Tr(S)− n)σ̂2

is an unbiased estimator of ‖Ŷ − Xβ‖2, where σ̂2 = ‖Y−Xβ̂OLS‖
2

n−p .

In this context, β∗ = E(β|Y) = 1
1+gβ0 + g

1+g β̂OLS:

• Then Ŷ = Xβ∗ = 1
1+g Xβ0 + g

1+g HY, where H = X(XTX)−1XT

• Therefore a = 1
1+g Xβ0 and S = g

1+g H, whose trace is gp
1+g
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Appendix: Variants of the lead-lag R2

Recall our model of gene expression – the R2 from this model is called the

lead-lag R2 (LLR2):

mA(t) = c1mB(t) + c2

∫ t

0

mB(s) ds + c3

∫ t

0

mA(s) ds + c4t + c5.

Consider two “sub-models”:

• Sub-model 1: R2 from this model, called LLR2
other, captures variation in

gene A explained by another gene B.

mA(t) = c1mB(t) + c2

∫ t

0

mB(s) ds + c5

• Sub-model 2: R2 from this model, called LLR2
own, captures variation in

gene A explained by its own past and linear time trends.

mA(t) = c3

∫ t

0

mA(s) ds + c4t + c5

In the scatterplots on slide 11, the x-axis shows LLR2
other and the y -axis

shows LLR2 − LLR2
own.
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Appendix: Immune response and metabolism
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