
Statistical Inference for Sparse

Reconstruction of Dynamical Systems

Sara Venkatraman

Cornell University, Statistics and Data Science

Joint work with Sumanta Basu and Martin Wells

1 / 22

Statistical problem of interest:

How can we use time series data x(t1), ..., x(tn) to learn the

form of an unknown differential equation dx/ dt = f (x(t))?

Outline:

1. Example: Lotka-Volterra equations

2. Sparse regression for learning differential equations

3. Leveraging recent work in high-dimensional inference

2 / 22

Example from ecology: predator-prey dynamics

The Lotka-Volterra equations describe how the populations of a prey

species, x1(t), and a predator species, x2(t), evolve in time:

dx1
dt

= αx1 − βx1x2,
dx2
dt

= δx1x2 − γv

where:

• αx1 = prey population’s rate

of increase

• βx1x2 = prey rate of decrease

due to predation

• δx1x2 = predator rate of

increase due to prey

availability

• γx2 = predator rate of

decrease

0

20

40

0 5 10 15 20 25
Time

Po
pu

la
tio

n
si

ze

x1(t), prey x2(t), predator

α = 1, β = 0.1, γ = 1.5, δ = 0.075
Lotka−Volterra equations (numerical solution)

3 / 22

Example from ecology: predator-prey dynamics

Would like to recover the equations for dx1/ dt and dx2/ dt from

(noisy) temporal population size data:

0

20

40

0 5 10 15 20 25
Time

Po
pu

la
tio

n
si

ze

Predator Prey

(Noisy samples from the Lotka−Volterra model)
Simulated prey and predator population sizes over time

Then we could numerically solve the learned equations to do

simulations, forecasting, etc.
4 / 22

Differential equation learning: problem setup

Suppose the temporal evolution of x(t) ∈ Rd is governed by

dx

dt
= f(x(t)), for some unknown f : Rd → Rd .

Given time series data

{x(t1), x(t2), ..., x(tn)},

how can we learn f in closed form?

5 / 22

Sparse reconstruction of ODEs

Approach will be based on sparse linear regression (SINDy1):

• Assume f has a sparse representation in some basis, e.g.

polynomials of x(t) components: x1(t), ..., xd(t)

• Why: Many systems can be written as a small linear

combination of x1(t), ..., xd(t) (or products of them)

• What’s new: Will use new theory for sparse regression to

assess the statistical significance of each term in the

reconstructed f

1 S. Brunton, J. Proctor, J. Kutz. Discovering governing equations from data by sparse identification of

nonlinear dynamical systems. PNAS, 2016.

6 / 22

Writing ODEs as linear systems: a 2D example

Lotka-Volterra equations:

dx1
dt

= αx1 − βx1x2

dx2
dt

= δx1x2 − γx2
0

20

40

0 5 10 15 20 25
Time

Po
pu

la
tio

n
si

ze

x1(t), prey x2(t), predator

α = 1, β = 0.1, γ = 1.5, δ = 0.075
Lotka−Volterra equations (numerical solution)

can be written as:

!
dx1
dt

dx2
dt

"
=

!
x1 x2 x1x2

"
#

$%
α 0

0 −γ

−β δ

&

'(

7 / 22

Writing ODEs as linear systems: a 3D example

Lorenz equations:

dx1
dt

= σ(x2 − x1)

dx2
dt

= x1(ρ− x3)− x2

dx3
dt

= x1x2 − βx3
−20 −10 0 10 20

 0
10

20
30

40
50

−30
−20

−10
 0

 10
 20

 30

x1

x 2x 3
can be written as:

!
dx1
dt

dx2
dt

dx3
dt

"
=

!
x1 x2 x3 x1x2 x1x3

"

#

$$$$$$%

−σ ρ 0

σ −1 0

0 0 −β

0 0 1

0 −1 0

&

''''''(

8 / 22

Sparse reconstruction of ODEs

Approach to estimating f : Rd → Rd in dx/ dt = f(x(t)):

• Assume each component of f is a sparse linear combination

of x1, ..., xd and their polynomials up to degree k

• E.g. if dimension d = 2 and degree k = 2 we have:

!
ẋ1 ẋ2

"

$% &
ẋ = f

=
!
1 x1 x2 x1x2 x21 x22

"

$% &
Θ(x)

'

((((((()

β01 β02

β11 β12

β21 β22

β31 β32

β41 β42

β51 β52

*

+++++++,

$% &
B

• Or in matrix form, ẋ = Θ(x)B

9 / 22

Remarks about matrix representation of ODEs

!
ẋ1 ẋ2

"

$% &
ẋ = f

=
!
1 x1 x2 x1x2 x21 x22

"

$% &
Θ(x)

'

((((((()

β01 β02

β11 β12

β21 β22

β31 β32

β41 β42

β51 β52

*

+++++++,

$% &
B

• Objective: estimate B from time series data x(t1), ..., x(tn)

• B should be sparse since many ODEs have only a few terms

• Θ(x) should be large enough to contain true terms in unknown f

• Large Θ(x) means this could become a high-dimensional problem

10 / 22

A regression problem

Data is assumed to be noisy so our model is:

Ẋ = Θ(X)B+ ε

E.g. for a 2D system and degree-2 polynomials we have:

Ẋ =

!

"#
ẋ1(t1) ẋ2(t1)

... ...

ẋ1(tn) ẋ2(tn)

$

%&

' () *
matrix of time derivatives
(computed numerically)

, B =

!

"#
β01 β02

... ...

β51 β52

$

%&

' () *
sparse matrix of
coeffs. (unknown)

, ε is i.i.d. N(0,σ2) noise,

Θ(X) =

!

"#
1 x1(t1) x2(t1) x1(t1)x2(t1) x2

1 (t1) x2
2 (t1)

...

1 x1(tn) x2(tn) x1(tn)x2(tn) x2
1 (tn) x2

2 (tn)

$

%&

' () *
polynomials of observed data

11 / 22

Derivative estimation

How to estimate the entries of Ẋ =

#

$%
ẋ(t1)T

...

ẋ(tn)T

&

'(:

• Finite difference approximations:

ẋ(tk) ≈
x(tk+1)− x(tk)

tk+1 − tk
, ẍ(tk) ≈

x(tk+1)− 2x(tk) + x(tk−1)

(tk+1 − tk)2

but these are sensitive to noise in the x(tk)’s.

• Polynomial interpolation: approximate ẋj(tk) by fitting a

polynomial through {xj(ti)}ni=1 and differentiating it

• Denoising methods: e.g. total variation regularization,

spectral filtering, ...

12 / 22

Estimating dx/ dt = f(x) via Ẋ = Θ(X)B+ ε

Recall that Ẋ = Θ(X)B+ ε is (for a 2D case):

Ẋ =

!

"#
ẋ1(t1) ẋ2(t1)

... ...

ẋ1(tn) ẋ2(tn)

$

%&

' () *
matrix of time derivatives
(computed numerically)

, B =

!

"#
β01 β02

... ...

β51 β52

$

%&

' () *
sparse matrix of
coeffs. (unknown)

,

Θ(X) =

!

"#
1 x1(t1) x2(t1) x1(t1)x2(t1) x2

1 (t1) x2
2 (t1)

...

1 x1(tn) x2(tn) x1(tn)x2(tn) x2
1 (tn) x2

2 (tn)

$

%&

' () *
polynomials of observed data

• Common approach to estimation: Estimate each col. of B

via the Lasso: B̂j = argminBj
‖Ẋj −Θ(X)Bj‖22 + λ‖Bj‖1

• Non-zero entries of B̂ indicate which terms belong in f

13 / 22

Recovering dx/ dt = f(x) via Lasso (L1) regression

Example – Lotka-Volterra simulation: add Gaussian noise (SD =

0.75) to state matrix X at 48 time points.

L1 regression (Lasso) recovers the following ODE:

dx1
dt

= −2.1 + 1.2x1 − 0.13x1x2 + 0.03x2
2 − 0.0002x3

1 + 0.0006x2
1 x2 +more...

dx2
dt

= 2.3− 0.08x1 − 1.7x2 + 0.04x1x2 + 0.0001x3
1 + 0.001x3

2

The green terms are ones that are actually in the L-V equations:
dx1
dt = αx1 − βx1x2,

dx2
dt = δx1x2 − γx2.

14 / 22

Recovering dx/ dt = f(x) via Lasso (L1) regression

Some issues with using the Lasso to recover dynamics:

• Lasso often does not work well for highly correlated feature

matrices. In the SINDy framework, the function library

matrix Θ(X) has (very) correlated columns.

Theory for how matrix structure affects Lasso predictive performance:

[A. Dalalyan, M. Hebiri, J. Lederer; IEEE Info. Theory 2012, Bernoulli 2017]

• There isn’t a widely-accepted notion of statistical

significance for Lasso estimates. Here, many terms with

small coefficients are included in the learned equations.

15 / 22

Proposed improvements

Recent advances in high-dimensional statistical inference have

provided uncertainty quantification for regularized regression.

• Bias-corrected versions of Lasso and ridge regression:

Hypothesis tests and confidence intervals derived from

estimator’s asymptotic normality.

[P. Bühlmann; Bernoulli, 2013], [C.-H. Zhang, S. Zhang; JRSS-B,

2013], [A. Javanmard, A. Montanari; JMLR, 2014]

• SEMMS (Scalable Empirical Bayes Model Selection):

Bayesian algorithm for sparse variable selection in linear models

[H. Y. Bar, J. G. Booth, M. T. Wells; JCGS, 2020]

Idea: Retain only statistically significant terms provided by these

methods in the learned differential equations.

16 / 22

Bias-corrected regularized regression

Usual linear model: Y = Xβ + ε, where X ∈ Rn×p.

No explicit formulas for the bias and variance of Lasso estimate of β.

• Bias-corrected Lasso estimator: [C.-H. Zhang, S. Zhang; 2013]

b̂j = β̂j +
Z(j)T (Y − Xβ̂)

Z(j)TX(j)
, j = 1, ..., p

where β̂ is the regular Lasso estimator,

X(j) is the j th column of X,

Z(j) are the residuals from Lasso-regressing X(j) on X(−j).

• For ε ∼ N(0,σ2In), sufficiently sparse β, and λ ∝
-
log p/n,

1

σ

√
n
Z(j)TX(j)

‖Z(j)‖2

.
b̂j − βj

/
d−→ N(0, 1)

Can use this to get conf. intervals/hypothesis tests for each βj .

17 / 22

SEMMS: Bayesian variable selection

Scalable EMpirical Bayes Model Selection

[H. Bar, J. Booth, M. T. Wells, JCGS 2020]

• Method places a 3-component Gaussian mixture prior on

regression coefficients, indicating that each feature

(polynomial term) has a positive, negative, or zero effect on

the outcome (time derivative)

• I.e., the method estimates the sign of each feature

• Uses computationally efficient generalized alternating

minimization algorithm

• Inference: fit standard linear regression model to the

non-zero features and use usual confidence intervals

18 / 22

Simulation: the Van der Pol system

A second-order ODE:

d2x

dt
= −x + µ

dx

dt
− µx2

dx

dt
.

Write as a system of two first-order equations:

dx1
dt

= x2

dx2
dt

= −x1 + µx2 − µx21x2

Simulation: Add noise to the numerical solution, then use sparse

regression methods to recover the dx2/ dt equation

19 / 22

Results on the Van der Pol equations

In simulations, including only the statistically significant terms yields

sparser ODEs that are much closer to the true equations:

−2

0

2

4

x[
1]

x[
2]

x[
1]

*x
[1

]

x[
1]

*x
[2

]

x[
2]

*x
[2

]

x[
1]

*x
[1

]*x
[1

]

x[
1]

*x
[1

]*x
[2

]

x[
1]

*x
[2

]*x
[2

]

x[
2]

*x
[2

]*x
[2

]

x[
1]

*x
[1

]*x
[1

]*x
[1

]

x[
1]

*x
[1

]*x
[1

]*x
[2

]

x[
1]

*x
[1

]*x
[2

]*x
[2

]

x[
1]

*x
[2

]*x
[2

]*x
[2

]

x[
2]

*x
[2

]*x
[2

]*x
[2

]

C
oe

ffi
ci

en
t v

al
ue

Reconstruction with the de−biased Lasso estimator

Van der Pol system:
dx2

dt
= − x1 + µx2 − µx1

2x2

−2

−1

0

1

2

x[
1]

x[
2]

x[
1]

*x
[1

]

x[
1]

*x
[2

]

x[
2]

*x
[2

]

x[
1]

*x
[1

]*x
[1

]

x[
1]

*x
[1

]*x
[2

]

x[
1]

*x
[2

]*x
[2

]

x[
2]

*x
[2

]*x
[2

]

x[
1]

*x
[1

]*x
[1

]*x
[1

]

x[
1]

*x
[1

]*x
[1

]*x
[2

]

x[
1]

*x
[1

]*x
[2

]*x
[2

]

x[
1]

*x
[2

]*x
[2

]*x
[2

]

x[
2]

*x
[2

]*x
[2

]*x
[2

]

C
oe

ffi
ci

en
t v

al
ue

Reconstruction with the de−biased ridge estimator

Van der Pol system:
dx2

dt
= − x1 + µx2 − µx1

2x2

Bias-corrected Lasso result: dx2
dt

= 0.03− 1.5x1 + 1.9x2 − 1.8x2
1 x2 + 0.4x1x

2
2

Bias-corrected ridge result: dx2
dt

= 0.03− 1.4x1 + 1.5x2 − 1.6x2
1 x2

20 / 22

Results on the Van der Pol equations

Numerical solution of
Van der Pol equations

−3 −2 −1 0 1 2 3 0
 5

10
15

−3
−2

−1
 0

 1
 2

 3

x1

x 2

t

Numerical solution of equations
learned via Lasso

−3 −2 −1 0 1 2 3 0
 5

10
15

−3
−2

−1
 0

 1
 2

 3

x1

x 2

t

Numerical solution of equations
learned via bias−corrected Lasso

−3 −2 −1 0 1 2 3 0
 5

10
15

−3
−2

−1
 0

 1
 2

 3

x1

x 2

t

Numerical solution of equations
learned via bias−corrected ridge

−3 −2 −1 0 1 2 3 0
 5

10
15

−3
−2

−1
 0

 1
 2

 3

x1

x 2

t

21 / 22

Thank you!

Sara Venkatraman

skv24@cornell.edu

https://sara-venkatraman.github.io

22 / 22

