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Statistical problem of interest:
How can we use time series data x(t1), ..., x(t,) to learn the
form of an unknown differential equation dx/dt = f(x(t))?

Outline:
1. Example: Lotka-Volterra equations
2. Sparse regression for learning differential equations

3. Leveraging recent work in high-dimensional inference



Example from ecology: predator-prey dynamics

The Lotka-Volterra equations describe how the populations of a prey
species, x1(t), and a predator species, x»(t), evolve in time:

dX1 5 dX2 6
— = X1 — PX1X2 — = 0X1X2 — YV
dt ’ dt K
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® ax; = prey population's rate Lotka-Volterra equations (numerical solution)
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Example from ecology: predator-prey dynamics

Would like to recover the equations for dx;/ dt and dx;/ dt from
(noisy) temporal population size data:

Simulated prey and predator population sizes over time
(Noisy samples from the Lotka-Volterra model)
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Then we could numerically solve the learned equations to do

simulations, forecasting, etc.
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Differential equation learning: problem setup

Suppose the temporal evolution of x(t) € R? is governed by

% = f(x(t)), for some unknown f : RY — RY.

Given time series data

{x(t1), x(t2), ..., x(tn)},

how can we learn f in closed form?



Sparse reconstruction of ODEs

Approach will be based on sparse linear regression (SINDy?):

e Assume f has a sparse representation in some basis, e.g.

polynomials of x(t) components: xi(t), ..., x4(t)

e Why: Many systems can be written as a small linear
combination of x1(t), ..., x4(t) (or products of them)

e What's new: Will use new theory for sparse regression to
assess the statistical significance of each term in the
reconstructed f

L's. Brunton, J. Proctor, J. Kutz. Discovering governing equations from data by sparse identification of

nonlinear dynamical systems. PNAS, 2016.



Writing ODEs as linear systems: a 2D example

Lotka-Volterra equations: Lotka-Vollera equations (qumerioa soluton)
dX]_ ﬂ
—p T X1 — pXix2 g
dt :
dX2 (5 szu—
- T 0X1X2 — YX2
dt
) ; % % ® 2
Time
can be written as:
a 0
dxq dxo |
[F F] = [Xl X2 Xlxz} 0 —v
-8 6
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Writing ODEs as linear systems: a 3D example

Lorenz equations:

d

% :O'(X2—X]_)

d -
f =x1(p—x3) — X2 g )
dX3

— = X1 X2 — DX
” 1X2 — 8x3

can be written as:

a , 0
c -1 0
[‘Litl dditz %}:[xl Xo X3 X1X2 X1X3] 0 0 -
0 0 1
0o -1 0_




Sparse reconstruction of ODEs

Approach to estimating f : R — R? in dx/dt = f(x(t)):

e Assume each component of f is a sparse linear combination

of x1,...,x4 and their polynomials up to degree k

e E.g. if dimension d = 2 and degree k = 2 we have:

Xl )-(2 =1 X1 X2  X1X2 X2
1

——

2
<]

x=f o(x)

e Or in matrix form, x = O(x)B

[Bo1 Boz]
Bu Pr2
Ba1 P22
P31 B3
Bar Paz

[B51 Pl

—~—e
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Remarks about matrix representation of ODEs

[Bo1 Bo2]
B B2
v : - 2 2 ﬂ21 ﬂ22
x1 x|l =1 xx1 x xix X1 X 3 3
—— 31 32
%= f o(x) Ba1 Baz
851 Bs2l
S
B

Objective: estimate B from time series data x(ty), ..., x(t,)

B should be sparse since many ODEs have only a few terms

e O(x) should be large enough to contain true terms in unknown f

Large ©O(x) means this could become a high-dimensional problem
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A regression problem
Data is assumed to be noisy so our model is:

X=0(X)B+¢

E.g. for a 2D system and degree-2 polynomials we have:

x(t)  X(t) Bor Poz
, L 2 .
X=1 .. , B=1|.. .|, eisiid. N(0,0%) noise,
xi(tn)  Xo(tn) Bs1 Bs2
~— — ————
matrix of time derivatives sparse matrix of
(computed numerically) coeffs. (unknown)

1 xi(t1) x(t) xi(t)x(t) X12(t1) X22(t1)
1 xl(t,,) XQ(tn) Xl(fn)X2(fn) X12(tn) XZQ(t")

polynomials of observed data
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Derivative estimation

x(t1)"
How to estimate the entries of X =
x(ta) "

e Finite difference approximations:

(1) ~ ) = x() gy x(tien) —2x(6) + x(te)

ol —tk (tisr — ti)?
but these are sensitive to noise in the x(tx)'s.

e Polynomial interpolation: approximate X;(tx) by fitting a
polynomial through {x;(t;)}7_; and differentiating it

e Denoising methods: e.g. total variation regularization,
spectral filtering, ...
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Estimating dx/dt = f(x) via X = @(X)B + ¢

Recall that X = @(X)B + ¢ is (for a 2D case):

xi(t)  *(t) Bor  Bo2
X = , B=1]... .|,
)'(1(tn) )'Q(tn) ﬁSl 552
| —— ————
matrix of time derivatives sparse matrix of
(computed numerically) coeffs. (unknown)

1 xa(h) x(t) x(h)x(t) xi(t) <5(q)
OX) = |..
1 oate) x(ta) xa(ta)xe(ta) xE(ta) >3(tn)

polynomials of observed data

e Common approach to estimation: Estimate each col. of B
via the Lasso: B; = argming_ [|X; — O(X)B;|13 + \||Bj]|1

e Non-zero entries of B indicate which terms belong in f
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Recovering dx/ dt = f(x) via Lasso (L) regression

Example — Lotka-Volterra simulation: add Gaussian noise (SD =
0.75) to state matrix X at 48 time points.

L; regression (Lasso) recovers the following ODE:

d
% = 2.1+ 1.2x — 0.13x13 + 0.03x — 0.0002x7 + 0.0006x2x2 + more...

dX2

Jp = 23008 — 175 +0.04xx + 0.0001x; + 0.001x3

The green terms are ones that are actually in the L-V equations:

d d
e = ax — fBxixe, G = Oxaxe — X
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Recovering dx/dt = f(x) via Lasso (L;) regression

Some issues with using the Lasso to recover dynamics:

e Lasso often does not work well for highly correlated feature
matrices. In the SINDy framework, the function library
matrix ®(X) has (very) correlated columns.

Theory for how matrix structure affects Lasso predictive performance:

[A. Dalalyan, M. Hebiri, J. Lederer; IEEE Info. Theory 2012, Bernoulli 2017]

e There isn't a widely-accepted notion of statistical
significance for Lasso estimates. Here, many terms with
small coefficients are included in the learned equations.
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Proposed improvements

Recent advances in high-dimensional statistical inference have
provided uncertainty quantification for regularized regression.

e Bias-corrected versions of Lasso and ridge regression:
Hypothesis tests and confidence intervals derived from
estimator’s asymptotic normality.

[P. Bihlmann; Bernoulli, 2013], [C.-H. Zhang, S. Zhang; JRSS-B,
2013], [A. Javanmard, A. Montanari; JMLR, 2014]

e SEMMS (Scalable Empirical Bayes Model Selection):
Bayesian algorithm for sparse variable selection in linear models
[H. Y. Bar, J. G. Booth, M. T. Wells; JCGS, 2020]

Idea: Retain only statistically significant terms provided by these

methods in the learned differential equations.
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Bias-corrected regularized regression

Usual linear model: Y = X3 + €, where X € R"*P,

No explicit formulas for the bias and variance of Lasso estimate of 3.

e Bias-corrected Lasso estimator: [C.-H. Zhang, S. Zhang; 2013]

~ . ) —_XA3
: Z0)7(Y - XB)

j — IBJ + ZOTX0) y J = 1a e P

where 3 is the regular Lasso estimator,
XU is the j* column of X,

ZU) are the residuals from Lasso-regressing X4) on X(=).
e For € ~ N(0,02l,), sufficiently sparse 3, and \ oc /log p/n,

1 ZWTxW) . d

Can use this to get conf. intervals/hypothesis tests for each 3;.
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SEMMS: Bayesian variable selection

Scalable EMpirical Bayes Model Selection
[H. Bar, J. Booth, M. T. Wells, JCGS 2020]

e Method places a 3-component Gaussian mixture prior on
regression coefficients, indicating that each feature
(polynomial term) has a positive, negative, or zero effect on

the outcome (time derivative)
e |.e., the method estimates the sign of each feature

e Uses computationally efficient generalized alternating
minimization algorithm

e Inference: fit standard linear regression model to the
non-zero features and use usual confidence intervals
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Simulation: the Van der Pol system

A second-order ODE:

dx n dx X2dx
— =X+ — —.
Pae =M at

Write as a system of two first-order equations:

dX1

— =X

dt 2

dX2 2
dr = —X1 + UX2 — Xy X2

Simulation: Add noise to the numerical solution, then use sparse
regression methods to recover the dx/ dt equation
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Results on the Van der Pol equations

Coefficient value

IS

~

o

-2

In simulations, including only the statistically significant terms yields

sparser ODEs that are much closer to the true equations:

dxp 5
Van der Pol system: n = —Xq + WX — UX{Xz

Reconstruction with the de-biased Lasso estimator

dxp 5
Van der Pol system: i X1+ UXg - UX{X2

Reconstruction with the de-biased ridge estimator

Coefficient value

—2-

[1]7 ——e——t
X{1]4 ——e——t

X2l
X(IX[1] -
X[1]"x(2]

(2]

X(1X{1]+
X(11'x(2]

Bias-corrected Lasso result: 2 =0.03 — 1.5x; + 1.9x — 1.8x{x + 0.4x13
Bias-corrected ridge result: ddif =0.03 — 1.4x + 1.5x% — 1.6x{x
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Results

on the Van der Pol equations

Numerical solution of Numerical solution of equations
Van der Pol equations learned via Lasso
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Thank you!

Sara Venkatraman
skv24@cornell.edu

https://sara-venkatraman.github.io
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