Statistical Inference for Sparse Reconstruction of Dynamical Systems

Sara Venkatraman
Cornell University, Statistics and Data Science

Joint work with Sumanta Basu and Martin Wells

Statistical problem of interest:
How can we use time series data $x\left(t_{1}\right), \ldots, x\left(t_{n}\right)$ to learn the form of an unknown differential equation $\mathrm{d} x / \mathrm{d} t=f(x(t))$?

Outline:

1. Example: Lotka-Volterra equations
2. Sparse regression for learning differential equations
3. Leveraging recent work in high-dimensional inference

Example from ecology: predator-prey dynamics

The Lotka-Volterra equations describe how the populations of a prey species, $x_{1}(t)$, and a predator species, $x_{2}(t)$, evolve in time:

$$
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=\alpha x_{1}-\beta x_{1} x_{2}, \quad \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=\delta x_{1} x_{2}-\gamma v
$$

where:

- $\alpha x_{1}=$ prey population's rate of increase
- $\beta x_{1} x_{2}=$ prey rate of decrease due to predation
- $\delta x_{1} x_{2}=$ predator rate of increase due to prey availability

Example from ecology: predator-prey dynamics

Would like to recover the equations for $\mathrm{d} x_{1} / \mathrm{d} t$ and $\mathrm{d} x_{2} / \mathrm{d} t$ from (noisy) temporal population size data:

Simulated prey and predator population sizes over time
(Noisy samples from the Lotka-Volterra model)

Then we could numerically solve the learned equations to do simulations, forecasting, etc.

Differential equation learning: problem setup

Suppose the temporal evolution of $\mathbf{x}(t) \in \mathbb{R}^{d}$ is governed by

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{f}(\mathbf{x}(t)), \text { for some unknown } \mathbf{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

Given time series data

$$
\left\{\mathbf{x}\left(t_{1}\right), \mathbf{x}\left(t_{2}\right), \ldots, \mathbf{x}\left(t_{n}\right)\right\}
$$

how can we learn \mathbf{f} in closed form?

Sparse reconstruction of ODEs

Approach will be based on sparse linear regression (SINDy ${ }^{1}$):

- Assume \mathbf{f} has a sparse representation in some basis, e.g. polynomials of $\mathbf{x}(t)$ components: $x_{1}(t), \ldots, x_{d}(t)$
- Why: Many systems can be written as a small linear combination of $x_{1}(t), \ldots, x_{d}(t)$ (or products of them)
- What's new: Will use new theory for sparse regression to assess the statistical significance of each term in the reconstructed \mathbf{f}

[^0]
Writing ODEs as linear systems: a 2D example

Lotka-Volterra equations:

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=\alpha x_{1}-\beta x_{1} x_{2} \\
& \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=\delta x_{1} x_{2}-\gamma x_{2}
\end{aligned}
$$

Lotka-Volterra equations (numerical solution)
$\alpha=1, \beta=0.1, \gamma=1.5, \delta=0.075$

— $\mathrm{x} 1(\mathrm{t})$, prey $-\mathrm{x} 2(\mathrm{t})$, predator
can be written as:

$$
\left[\begin{array}{ll}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t} & \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{1} x_{2}
\end{array}\right]\left[\begin{array}{cc}
\alpha & 0 \\
0 & -\gamma \\
-\beta & \delta
\end{array}\right]
$$

Writing ODEs as linear systems: a 3D example

Lorenz equations:

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=\sigma\left(x_{2}-x_{1}\right) \\
& \frac{\mathrm{d} x_{2}}{\mathrm{~d} t}=x_{1}\left(\rho-x_{3}\right)-x_{2} \\
& \frac{\mathrm{~d} x_{3}}{\mathrm{~d} t}=x_{1} x_{2}-\beta x_{3}
\end{aligned}
$$

can be written as:

$$
\left[\begin{array}{lll}
\frac{d x_{1}}{d t} & \frac{d x_{2}}{d t} & \frac{d x_{3}}{d t}
\end{array}\right]=\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{1} x_{2} & x_{1} x_{3}
\end{array}\right]\left[\begin{array}{ccc}
-\sigma & \rho & 0 \\
\sigma & -1 & 0 \\
0 & 0 & -\beta \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

Sparse reconstruction of ODEs

Approach to estimating $\mathbf{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ in $\mathrm{dx} / \mathrm{d} t=\mathbf{f}(\mathbf{x}(t))$:

- Assume each component of \mathbf{f} is a sparse linear combination of x_{1}, \ldots, x_{d} and their polynomials up to degree k
- E.g. if dimension $d=2$ and degree $k=2$ we have:

$$
\underbrace{\left[\begin{array}{ll}
\dot{x}_{1} & \dot{x}_{2}
\end{array}\right]}_{\dot{\mathrm{x}}=\mathrm{f}}=\underbrace{\left[\begin{array}{llllll}
1 & x_{1} & x_{2} & x_{1} x_{2} & x_{1}^{2} & x_{2}^{2}
\end{array}\right]}_{\Theta(\mathrm{x})} \underbrace{\left[\begin{array}{cc}
\beta_{01} & \beta_{02} \\
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22} \\
\beta_{31} & \beta_{32} \\
\beta_{41} & \beta_{42} \\
\beta_{51} & \beta_{52}
\end{array}\right]}_{\mathrm{B}}
$$

- Or in matrix form, $\dot{\mathbf{x}}=\boldsymbol{\Theta}(\mathbf{x}) \mathbf{B}$

Remarks about matrix representation of ODEs

$$
\underbrace{\left[\begin{array}{ll}
\dot{x}_{1} & \dot{x}_{2}
\end{array}\right]}_{\dot{\mathrm{x}}=\mathrm{f}}=\underbrace{\left[\begin{array}{llllll}
1 & x_{1} & x_{2} & x_{1} x_{2} & x_{1}^{2} & x_{2}^{2}
\end{array}\right]}_{\Theta(\mathrm{x})} \underbrace{\left[\begin{array}{lll}
\beta_{01} & \beta_{02} \\
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22} \\
\beta_{31} & \beta_{32} \\
\beta_{41} & \beta_{42} \\
\beta_{51} & \beta_{52}
\end{array}\right]}_{\mathrm{B}}
$$

- Objective: estimate \mathbf{B} from time series data $\mathbf{x}\left(t_{1}\right), \ldots, \mathbf{x}\left(t_{n}\right)$
- B should be sparse since many ODEs have only a few terms
- $\boldsymbol{\Theta}(\mathbf{x})$ should be large enough to contain true terms in unknown \mathbf{f}
- Large $\boldsymbol{\Theta}(\mathbf{x})$ means this could become a high-dimensional problem

A regression problem

Data is assumed to be noisy so our model is:

$$
\dot{\mathbf{X}}=\boldsymbol{\Theta}(\mathbf{X}) \mathbf{B}+\boldsymbol{\varepsilon}
$$

E.g. for a 2D system and degree-2 polynomials we have:

$$
\begin{gathered}
\dot{\mathbf{X}}=\underbrace{\left[\begin{array}{cc}
\dot{x}_{1}\left(t_{1}\right) & \dot{x}_{2}\left(t_{1}\right) \\
\ldots & \ldots \\
\dot{x}_{1}\left(t_{n}\right) & \dot{x}_{2}\left(t_{n}\right)
\end{array}\right]}_{\begin{array}{c}
\text { matrix of time derivatives } \\
\text { (computed numerically) }
\end{array}}, \quad \mathbf{B}=\underbrace{\left[\begin{array}{ccc}
\beta_{01} & \beta_{02} \\
\beta_{51} & \beta_{52}
\end{array}\right]}_{\begin{array}{c}
\text { sparse matrix of } \\
\text { coeffs. (unknown) }
\end{array}}, \quad \varepsilon \text { is i.i.d. } N\left(0, \sigma^{2}\right) \text { noise, } \\
\boldsymbol{\Theta}(\mathbf{X})=\underbrace{\left[\begin{array}{ccccc}
1 & x_{1}\left(t_{1}\right) & x_{2}\left(t_{1}\right) & x_{1}\left(t_{1}\right) x_{2}\left(t_{1}\right) & x_{1}^{2}\left(t_{1}\right)
\end{array} x_{2}^{2}\left(t_{1}\right)\right.}_{\text {polynomials of observed data }} \begin{array}{ccccc}
\ldots & \cdots & \cdots & \cdots & \cdots \\
1 & x_{1}\left(t_{n}\right) & x_{2}\left(t_{n}\right) & x_{1}\left(t_{n}\right) x_{2}\left(t_{n}\right) & x_{1}^{2}\left(t_{n}\right) \\
x_{2}^{2}\left(t_{n}\right)
\end{array}]
\end{gathered}
$$

Derivative estimation

How to estimate the entries of $\dot{\mathbf{X}}=\left[\begin{array}{c}\dot{\mathbf{x}}\left(t_{1}\right)^{T} \\ \ldots \\ \dot{\mathbf{x}}\left(t_{n}\right)^{T}\end{array}\right]$:

- Finite difference approximations:

$$
\dot{\mathbf{x}}\left(t_{k}\right) \approx \frac{\mathbf{x}\left(t_{k+1}\right)-\mathbf{x}\left(t_{k}\right)}{t_{k+1}-t_{k}}, \quad \ddot{\mathbf{x}}\left(t_{k}\right) \approx \frac{\mathbf{x}\left(t_{k+1}\right)-2 \mathbf{x}\left(t_{k}\right)+\mathbf{x}\left(t_{k-1}\right)}{\left(t_{k+1}-t_{k}\right)^{2}}
$$

but these are sensitive to noise in the $\mathbf{x}\left(t_{k}\right)$'s.

- Polynomial interpolation: approximate $\dot{x}_{j}\left(t_{k}\right)$ by fitting a polynomial through $\left\{x_{j}\left(t_{i}\right)\right\}_{i=1}^{n}$ and differentiating it
- Denoising methods: e.g. total variation regularization, spectral filtering, ...

Estimating $\mathrm{d} \mathbf{x} / \mathrm{d} t=\mathbf{f}(\mathbf{x})$ via $\dot{\mathbf{X}}=\boldsymbol{\Theta}(\mathbf{X}) \mathbf{B}+\boldsymbol{\varepsilon}$

Recall that $\dot{\mathbf{X}}=\boldsymbol{\Theta}(\mathbf{X}) \mathbf{B}+\boldsymbol{\varepsilon}$ is (for a 2 D case):

$$
\begin{gathered}
\dot{\mathbf{X}}=\underbrace{\left[\begin{array}{cc}
\dot{x}_{1}\left(t_{1}\right) & \dot{x}_{2}\left(t_{1}\right) \\
\dot{x}_{1}\left(t_{n}\right) & \ldots \\
\dot{x}_{2}\left(t_{n}\right)
\end{array}\right]}_{\begin{array}{c}
\text { matrix of tine derivatives } \\
\text { (computed numericaly) }
\end{array}}, \quad \mathbf{B}=\underbrace{\left[\begin{array}{ccc}
\beta_{01} & \beta_{02} \\
\ldots & \ldots \\
\beta_{51} & \beta_{52}
\end{array}\right]}_{\begin{array}{c}
\text { sparse metrix of } \\
\text { coefs. (unknown) }
\end{array}}, \\
\mathbf{\Theta}(\mathbf{X})=\underbrace{\left[\begin{array}{ccccc}
1 & x_{1}\left(t_{1}\right) & x_{2}\left(t_{1}\right) & x_{1}\left(t_{1}\right) x_{2}\left(t_{1}\right) & x_{1}^{2}\left(t_{1}\right) \\
\ldots & x_{2}^{2}\left(t_{1}\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & x_{1}\left(t_{n}\right) & x_{2}\left(t_{n}\right) & x_{1}\left(t_{n}\right) x_{2}\left(t_{n}\right) & x_{1}^{2}\left(t_{n}\right)
\end{array} x_{2}^{2}\left(t_{n}\right)\right.}_{\text {polynomials of observed data }}]
\end{gathered}
$$

- Common approach to estimation: Estimate each col. of \mathbf{B} via the Lasso: $\hat{\mathbf{B}}_{j}=\operatorname{argmin}_{\mathbf{B}_{j}}\left\|\dot{\mathbf{X}}_{j}-\boldsymbol{\Theta}(\mathbf{X}) \mathbf{B}_{j}\right\|_{2}^{2}+\lambda\left\|\mathbf{B}_{j}\right\|_{1}$
- Non-zero entries of $\hat{\mathbf{B}}$ indicate which terms belong in \mathbf{f}

Recovering $\mathrm{d} \mathbf{x} / \mathrm{d} t=\mathbf{f}(\mathbf{x})$ via Lasso $\left(L_{1}\right)$ regression

Example - Lotka-Volterra simulation: add Gaussian noise (SD $=$ 0.75) to state matrix \mathbf{X} at 48 time points.
L_{1} regression (Lasso) recovers the following ODE:

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=-2.1+1.2 x_{1}-0.13 x_{1} x_{2}+0.03 x_{2}^{2}-0.0002 x_{1}^{3}+0.0006 x_{1}^{2} x_{2}+\text { more } \ldots \\
& \frac{\mathrm{d} x_{2}}{\mathrm{~d} t}=2.3-0.08 x_{1}-1.7 x_{2}+0.04 x_{1} x_{2}+0.0001 x_{1}^{3}+0.001 x_{2}^{3}
\end{aligned}
$$

The green terms are ones that are actually in the L-V equations: $\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=\alpha x_{1}-\beta x_{1} x_{2}, \quad \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=\delta x_{1} x_{2}-\gamma x_{2}$.

Recovering $\mathrm{d} \mathbf{x} / \mathrm{d} t=\mathbf{f}(\mathbf{x})$ via Lasso $\left(L_{1}\right)$ regression

Some issues with using the Lasso to recover dynamics:

- Lasso often does not work well for highly correlated feature matrices. In the SINDy framework, the function library matrix $\boldsymbol{\Theta}(\mathbf{X})$ has (very) correlated columns.
Theory for how matrix structure affects Lasso predictive performance:
[A. Dalalyan, M. Hebiri, J. Lederer; IEEE Info. Theory 2012, Bernoulli 2017]
- There isn't a widely-accepted notion of statistical significance for Lasso estimates. Here, many terms with small coefficients are included in the learned equations.

Proposed improvements

Recent advances in high-dimensional statistical inference have provided uncertainty quantification for regularized regression.

- Bias-corrected versions of Lasso and ridge regression: Hypothesis tests and confidence intervals derived from estimator's asymptotic normality.
[P. Bühlmann; Bernoulli, 2013], [C.-H. Zhang, S. Zhang; JRSS-B, 2013], [A. Javanmard, A. Montanari; JMLR, 2014]
- SEMMS (Scalable Empirical Bayes Model Selection):

Bayesian algorithm for sparse variable selection in linear models [H. Y. Bar, J. G. Booth, M. T. Wells; JCGS, 2020]

Idea: Retain only statistically significant terms provided by these methods in the learned differential equations.

Bias-corrected regularized regression

Usual linear model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon$, where $\mathbf{X} \in \mathbb{R}^{n \times p}$.
No explicit formulas for the bias and variance of Lasso estimate of $\boldsymbol{\beta}$.

- Bias-corrected Lasso estimator: [C.-H. Zhang, S. Zhang; 2013]

$$
\hat{\mathbf{b}}_{j}=\hat{\boldsymbol{\beta}}_{j}+\frac{\mathbf{Z}^{(j) T}(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}})}{\mathbf{Z}^{(j)^{T}} \mathbf{X}^{(j)}}, j=1, \ldots, p
$$

where $\hat{\boldsymbol{\beta}}$ is the regular Lasso estimator,
$\mathbf{X}^{(j)}$ is the $j^{\text {th }}$ column of \mathbf{X},
$\mathbf{Z}^{(j)}$ are the residuals from Lasso-regressing $\mathbf{X}^{(j)}$ on $\mathbf{X}^{(-j)}$.

- For $\varepsilon \sim N\left(0, \sigma^{2} \mathbf{I}_{n}\right)$, sufficiently sparse $\boldsymbol{\beta}$, and $\lambda \propto \sqrt{\log p / n}$,

$$
\frac{1}{\sigma} \sqrt{n} \frac{\mathbf{Z}^{(j) T} \mathbf{X}^{(j)}}{\left\|\mathbf{Z}^{(j)}\right\|_{2}}\left(\hat{\mathbf{b}}_{j}-\boldsymbol{\beta}_{j}\right) \xrightarrow{d} N(0,1)
$$

Can use this to get conf. intervals/hypothesis tests for each $\boldsymbol{\beta}_{j}$.

SEMMS: Bayesian variable selection

Scalable EMpirical Bayes Model Selection
[H. Bar, J. Booth, M. T. Wells, JCGS 2020]

- Method places a 3-component Gaussian mixture prior on regression coefficients, indicating that each feature (polynomial term) has a positive, negative, or zero effect on the outcome (time derivative)
- I.e., the method estimates the sign of each feature
- Uses computationally efficient generalized alternating minimization algorithm
- Inference: fit standard linear regression model to the non-zero features and use usual confidence intervals

Simulation: the Van der Pol system

A second-order ODE:

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t}=-x+\mu \frac{\mathrm{d} x}{\mathrm{~d} t}-\mu x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

Write as a system of two first-order equations:

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=x_{2} \\
& \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=-x_{1}+\mu x_{2}-\mu x_{1}^{2} x_{2}
\end{aligned}
$$

Simulation: Add noise to the numerical solution, then use sparse regression methods to recover the $\mathrm{d} x_{2} / \mathrm{d} t$ equation

Results on the Van der Pol equations

In simulations, including only the statistically significant terms yields sparser ODEs that are much closer to the true equations:

Van der Pol system: $\frac{d x_{2}}{d t}=-x_{1}+\mu x_{2}-\mu x_{1}^{2} x_{2}$
Reconstruction with the de-biased Lasso estimator

Van der Pol system: $\frac{d x_{2}}{d t}=-x_{1}+\mu x_{2}-\mu x_{1}^{2} x_{2}$
Reconstruction with the de-biased ridge estimator

Bias-corrected Lasso result: $\frac{d x_{2}}{d t}=0.03-1.5 x_{1}+1.9 x_{2}-1.8 x_{1}^{2} x_{2}+0.4 x_{1} x_{2}^{2}$ Bias-corrected ridge result: $\frac{\mathrm{d} x_{2}}{\mathrm{dt}}=0.03-1.4 x_{1}+1.5 x_{2}-1.6 x_{1}^{2} x_{2}$

Results on the Van der Pol equations

Numerical solution of Van der Pol equations

X_{1}

Numerical solution of equations learned via bias-corrected Lasso

Numerical solution of equations
learned via Lasso

Numerical solution of equations learned via bias-corrected ridge

Thank you!

Sara Venkatraman
skv24@cornell.edu

https://sara-venkatraman.github.io

[^0]: ${ }^{1}$ S. Brunton, J. Proctor, J. Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. PNAS, 2016.

